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A two-dimensional analogue of Pad6 approximant theory 

C H Lutterodt 
Department of Mathematical Physics, University of Birmingham, PO Box 363, 
Birmingham B15 2TT, UK 
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Abstract. We introduce a formulation for two-dimensional Pade approximant theory. We 
prove a theorem on convergence under the stringent assumption of uniform boundedness. 
Finally we discuss some general problems connected with rational functions in several 
variable theory. 

1. Introduction 

In this paper we attempt to formulate the basis for a two-dimensional rational approxi- 
mant which contains the Pade solution in one dimension. 

Rational approximants to  a holomorphic function in any dimensions are extremely 
useful for the following reasons : 

(i) They always contain a subsequence which converges with considerable accelera- 
tion to the holomorphic function. This has been observed numerically. 

(ii) They, in general, have a much larger domain of convergence than the homomor- 
phic function they approximate and hence they can be continued analytically outside 
the domain of convergence of the holomorphic function, except where the latter has a 
natural boundary. 

Given a functionfdefined in the complex two-dimensional euclidean space (T2, which 
is analytic at a point io = (z,,, z2,) E (T2, we have within some neighbourhood U,, 

where i = ( z ,  , z2) E U,, and c,, are all known. In principle we can construct a suitable 
sequence of rational approximants to f in U,,, knowing the c, which, according to (i) 
and (ii), has a subsequence convergent to f in a domain larger than Uc,. 

However, rational functions being meromorphic functions raise some of the problems 
associated with such functions in the two or more complex variables. We shall defer 
discussion of some of these problems until the conclusion. For simplicity we shall tackle 
cases where io = (0,O). 

The pattern of the work is as follows : in 9 2 we present the definition and its conse- 
quences; in 0 3 we present a simple convergence theorem under the stringent assumption 
of uniform boundedness ; in 9 4, we discuss some general problems to be borne in mind 
when dealing with approximants in several complex variables. Appendix 1 contains 
some examples of equations for solving the coefficients of the approximant, while 
appendix 2 contains a table of a few terms in the ‘tensor’ table for a known function, and 
also a geometric representation for the ‘tensor’ table. 
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2. Definition and consequences 

Let f ( C )  be analytic in some domain 9 c (T2 and be holomorphic in some neighbourhood 
U of the origin, with U c 9, then f (C)  has a Taylor expansion 

m m  

where c,, E 4 (space of complex numbers) and coo # 0. The polynomials P ” , ( [ )  and 
Q M M , ( [ )  which are chosen relatively prime? in U, defined by 

are both holomorphic in U. The quotient of these two polynomials P ” * ( [ ) / Q M M , ( [ ) ,  
which is a rational function, is defined only on U\d where d is the set of its indeter- 
minate points?. 

To be able to define the approximant we have in mind let us examine the relation 

in U where K 2 0, 2 2 0. If we assume aKL = 0 for all 0 < K < N + M  and 
0 < 2 < N ‘ +  M‘ the relation (2.4) leads to the following sets of equations : 

min(M,K) min(M’.L) 

1 1 ‘rS‘K-r.2-S = O < K < N ; N ‘ + ~  < 2 < N ’ + M ’  (2.6) 

1 1 ’rSCK-r,L-S = N + l  < K <  N + M ; O < I <  N’  (2.7) 

r = O  s = O  

min(M,K) min(M’,A) 

r = O  s = O  

min(M,K) min(M’,L) 

1 ‘rScK-r,,-S = N + l  < K < N + M ;  N ’ + 1  < A  < N ‘ + M ’ .  (2.8) 

Each of the equations (2.5), (2.6), (2.7) and (2.8) represents a set of rectangular block 

r = O  s = O  

equations which can be joined to fill up a larger rectangle below. 

(090) (09 N )  

( N ’ ,  0) 

( N ’ + M ’ ,  0) 

Figure 1. 

t See 6 4. 



A two-dimensional analogue of Padk approximant theory 1029 

The total number of equations from (2 .5)  to (2.8) is ( N +  M +  1) x (“+MI+ 1). 
We shall call the linear space of these equations S .  The linear spaces spanned by the 
a and the b respectively shall be denoted A and B, where dim(A) = ( N  + 1 )  x (N’+ 1 )  and 
dim@) = ( M +  1 )  x ( M ’ +  1 ) .  In general, it turns out that dim@ - A) > dim B, which 
simply means the number of independent equations in S - A exceeds that in B. But 
since the number of independent variables of the independent equations in S - A is 
equal to dim@), all the b in B must vanish and hence the a must also vanish. In other 
words the approximant is simple indeterminate at each point. This is a direct con- 
sequence of the choice of aKh above. Thus to define a meaningful approximant not all the 
aK,(O < K < N + M ,  0 < I < N‘ + M’)  must vanish. We modify (2.4) into the form 

We now introduce the definition of a rational approximant of type B’ tof([) holo- 
morphic on U as follows. 

Definition. Let [ N ,  N ‘ ;  M ,  M ‘ ] / ( [ )  = PNN,([)/QMM,([). We say [ N ,  N ’ ;  M ,  M ‘ ] / ( [ )  is a 
rational approximant type B’ tof([) in U\& if BANrMMr(I) given by 

(2.10) 

is different from zero. 

The form OfB”‘MM’([) in (2.9) depends on which aKA do not vanish for 0 < K < N + M 
a n d 0  < E, < N ‘ + M ‘ .  

In (2.10) we use a specific form of B”*MM*([)  which we call B i N r M M t ( [ ) .  The effect of 
this particular choice is to disengage from the equations in S those unnecessary extra 
equations leaving us with a set of independent equations, 

min(M,K) min(M’,A) 

1 ‘rSCK-r,A-S = a K A  0 < K < N ; O  < 2 < N‘ (2.11) 
r = O  s = O  

min(M’,A) e bOsCO,A-s = 0 N ‘ + 1  < I  < N ’ + M ‘  
s = o  

(2.12) 

(2.13) 

min(M,K) min(M’,A) 

C b r s c K - r , a - s  = 0 N + l  < K < N + M ; N ’ + l  < I  < N ’ + M ’ .  (2.14) 
r = O  s = O  

Since we have ( M  + 1) x ( M ’ +  1) - 1 independent equations involving the b alone, we 
introduce the normalization boo = 1 in order to obtain a unique solution for the re- 
maining b .  Once this has been done we may proceed to  solve for the a in terms of the 
band the c. Hence the rational function will be determined in the sense of(2.10). Examples 
have been included in the appendix 1. In analogy with the Pade table for the rational 
sequences, we build up a ‘tensor’ table for the type B’approximants [ N ,  N ‘ ;  M ,  M ’ ] ( [ ) .  
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The table turns out to fill up an infinite cubic figure which we have attempted to repre- 
sent. A convenient way to describe the location of elements in the infinite configuration 
is first to locate the plane on which the elements lie. We characterize such planes by the 
suffices M', N' and denote them by B N I M r .  We shall, from now on, refer to them as the 
B-planes. The following is an array of the B-planes. 

Boo Bo1 Bo2 . "  
BlO B l l  8 1 2  * . .  

B2o B21 B22 . . .  

Each B-plane is spanned by 

B,, = [0, r ;  0, s] [0, r ;  1 ,  s] [0, r ;  2, s] . . . 
[l,r;O,s] [ l , r ; l , s ]  [ l , r ;2 , s ]  . . .  
[2, r ;  0, s] [2, r ;  1 ,  s] [2, r ;  2, s] . . . 

These two tables completely describe any element's position in the 'tensor' table. A 
geometrical representation of the B-planes is attached in appendix 2. The question of 
normality of the 'tensor' table will not be discussed here. 

Remarks. In introducing the definition of the type B' approximant we chose a specific 
form of BNNfMM,(C) to remove certain subsets of the equations (2.6) and (2.7). It is clear 
from these equations that there are at most 

( N  + l)M' (N'+  l)M ( M f l X (  M 1 
such choices for the B",MMV(C) one can make. However, the form in (2.10) is unique 
amongst all possible forms LPNNrMM,(c) in that it is the only one which leads to approxi- 
mants reducible to the Pade approximant on projection from two variables to one. 
That is, 

[ N ,  N' ; M, M'lj(z 1 9 0) = [ N ,  MljCz 1) 

[ N ,  N' ; M, M'If(0, ~ 2 )  = [ N ' ,  M'lf(z2). 

The definition of the rational approximants typeB' or Ba always includes two variable 
analytic functions of the form 

for example 
(9 f (z l ,  z2) = errz2 

1 
(ii) f(z19z2) = ~ * 1 -z1z2 

We have thus formulated a two-dimensional typeB' approximant which we show in the 
next section contains a convergent subsequence in some compact bicylindrical domain 
if we assume the approximants to be uniformly bounded. 
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There are, however, other alternatives (John and Lutterodt 1973, Chisholm 1972, 
Common and Graves-Morris 1972) in formulating rational approximants in two or 
several variables. 

3. Convergence 

The problem of convergence of Pade approximants is generally acknowledged to be a 
difficult one. Under various restrictions, however, quite a number of useful results have 
been obtained in the one-dimensional case which may not generalize easily to two or more 
dimensions. 

In the sequel we give an account of generalization of a result obtained by Baker 
(1965,1970) for the one-dimensional case under the stringent assumption of uniform 
boundedness for the elements of thk Pade table. This is embodied in the following 
theorem which is proved in some bicylindrical domain. 

Theorem (i) Let {Pklk2([)} be any sequence of the 'tensor' table defined in 

where k , ,  k z ,  respectively characterize ( N ,  M )  and ( N ' ,  M') with N > M ,  N' > M'. 
(ii) N + M + c o a s k , - , c o , N ' + M ' - + c o a s k , + c o .  
(iii) {Pk1k2(c)} is uniformly bounded in C,  x Cz c 9 where Ci = { z i : I z i (  < R i }  and 

Then there exists a subsequence of {Pklk2(l)) on a compact sub-domain of C, x C, 
Ci is the closure of Ci, i = 1,2. 

which converges uniformly to a holomorphic function f. 

Proof. From (iii) there exists A independent of zi E Ci ( i  = 1,2) such that 

Since P k l k 2 ( [ )  is a rational function in each variable separately, this implies analyticity 
in each variable separately within c,  x cz. Hence by Osgood's l m " ,  Pk,k2(() is 
analytic in both variables in C1 x C2 and we write 

We choose a sub-bicylindrical domain of C, x C2 where Pkrk2(c) converges absolutely 
and uniformly, defining the sub-bicylindrical domain Crl x Cr2 by 

Ci = { z i ~ C i : I z i l  G ri < R i ( i  = 1, ;  

Within C1 x Cr2 we have, 
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where we have used the generalized Cauchy's inequality for fixed k ,  , k 2  

Since 0 < ri /Ri  < 1 (i = 1,2) given z > 0, there exists Jo such that 

(i = 1,2) 

and hence for all J i  > Jo (i = 1,2) 

From (ii) we choose K ,  and K 2  such that wherever j , ,  k ,  > K 1  and j 2 ,  k2 > K 2  

so that 

(3.4) 

This is possible from the definitions (2.9) and (2.10) together with N > M and N' > M' 
by making B i N c M M , ( ( )  shrink to zero on the boundary O ( Z : + ~ + I ) .  O ( Z ; ' + ~ ' + ~  ) for 
sufficiently large N and N'.  

We now take K O  = maxlSie2 ( K i )  and consequently for k i ,  j i  > K O  (i = 1,2) and 
for ( E Cri x Cr2 we find 

< + E + + € + + €  = E (3.7) 

from (3.5) and (3.6). 
Hence by the generalized principle of convergence (Whittaker and Watson 1962, 

Rankin 1963) and Vitali's theorem (Gunning and Rossi 1965) on Crl x Cr2 a subsequence 
of {P,'lkz(c)} exists which converges uniformly to  a holomorphic function f on c" x Cr2.  

Remark. In view of the requirements of the above theorem diagonal approximants 
( N  = M = N' = M ' )  of the B'-type approximants are excluded. In fact, the diagonal 

t I am grateful to Dr J Gunson for pointing out this choice. 
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approximants fail to converge except, perhaps, in some very small neighbourhood of the 
origin. This is demonstrated by the table of appendix 2. 

4. Discussion 

In $ 2  we postponed discussion of the problems associated with functions in several 
complex variables which are of some importance in studying rational approximants to 
holomorphic functions, using Taylor expansions in more than one dimension. We shall 
briefly discuss three of these problems which in a sense are related to the problems of 
extending local properties of functions to global ones. 

The first problem is to do with the relatively prime requirement for the two poly- 
nomials P and Q in the rational approximant or function R = P/Q, at each point of some 
neighbourhood where f has a Taylor development. It is true in general, in several 
complex variables for meromorphic (rational) functions that if the relatively prime 
condition is satisfied at some point io, then it is satisfied everywhere (Gunning and Rossi 
1965) in some neighbourhood U,, . However, in some domain 9 where U,, c 9, R may 
well possess some singularities peculiar only to several complex variables, which in- 
validate the relatively prime condition. In fact R is indeterminate on the subvariety 
d = {( E 9 : P = 0 and Q = 0} of these singularities. For instance, the rational func- 
tion R such that P = z 2 - z 1 + $ z t - $ z :  and Q = l - z , - z , + ~ z ~ + ) z ~  satisfies the 
relatively prime condition in some neighbourhood of the origin, however, it has a point 
of d at z1 = z2  = 1. 

The problem posed by these indeterminate points of R in d is not insurmountable 
and in fact may be avoided by restricting R to the domain 9' = 9\d. In other words 
R is defined on that part of 9 which does not overlap with d. 

The second problem is connected with the so-called Cousin's problems (Gunning 
and Rossi 1965) in several complex variables. The idea of a meromorphic function R 
on some domain 9' is replaced by an equivalence relation (Lelong 1960) on overlapping 
neighbourhoods in 9'. To see this we remind ourselves of the definition of a rational 
(meromorphic) function R on 9'. We want R on 9' rather than 9 to avoid the am- 
biguities of indeterminate points of R in 9. R is a rational (meromorphic) function at 
each point io in 9' if each io has a neighbourhood U,, in which P and Q are holomorphic 
and R = P/Q has a determined value (finite or infinite) in 9' n Uc0. Thus we can find an 
open covering of 9' {v} i E I  (a denumerable index set) on which R = Pi/Qi and uisl = 9'. On overlapping neighbourhoods V, ,  V, with A V, # $I we have 
PiQj = PjQi and this defines the equivalence relation on 9' at each point. 

This problem, however, reduces to a theoretical nicety which for all practical and 
computational purposes may be ignored. 

The third problem is connected with possible use of rational approximants R in 
continuing an analytically holomorphic function on to a cut or across a cut to other 
sheets. Algebraic branch points in several complex variables have neighbourhoods which 
are locally non-euclidean (Gunning and Rossi 1965, Bremermann 1965). Thus to ensure 
a monodromic extension of the domain of the holomorphic function f by means of its 
rational approximants R on to a cut, we have to keep away from the branch points. 

Of the three problems discussed the final one is the most important in practical terms. 
For in analogy with the Pade approximants in one dimension, which may be employed 
(Basdevant 1972) in continuing holomorphic functions analytically outside their 
domains of convergence and on to cuts, one has to ensure stability of the continuation. 
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In a neighbourhood of a branch point in two or more variables this may not be guaranteed 
and therefore such neighbourhoods must be well avoided. 

In this paper we have presented a definition of a special type of rational approximant 
in two variables and a simple convergence theorem based on it. Some of the properties 
of these approximants will be presented shortly in a separate paper. 
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Appendix 1 

The following is an example indicating the number of equations involved in solving the 
system. By taking boo = 1, the system can be solved. For example N = 2, M = 1, 
N I =  1 , M ’ = O  

1 a00 = boocoo 

a 1 0  = ~ o o ~ l o + b l o ~ o o  

( N + l ) ( N ’ + l )  = 3 x 2  = 6 t a 0 1  = booCO1 

a l l  = ~ o o ~ l l + ~ l o ~ o l  

J a 2 0  = ~ 0 0 ~ 2 0 + ~ l O ~ l O  

a 2 1  = bOOC21 + h o c 2 0  

0 = b o o ~ 3 0 + b l o ~ 2 0  M = 1 

Appendix 2 

We present here some solutions of rational approximants for the function 

which is entire and has the following Taylor expansion in the neighbourhood U of the 
origin : 

W 1 

A.2.1. A geometrical representation of the infinite ‘cubic’ configuration 

One way to give a satisfactory geometrical representation of the infinite ‘cubic’ con- 
figuration is by introducing counting procedure for the B-planes. This is to enable us to 
mark the position on an infinite string, of the point of suspension of each B-plane. This 
linearizes the B. 
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The arrows in the above diagram indicate the order in which the B-planes are positioned 
on the infinite string. That is: BooBolB11B1oB20B21B22B12B02B03.. . 

Figure 2. 

t 

N N+M P t  

Figure 3. Diagrams showing behaviour as N --* m, N '  + m, N > M ,  N '  z M'. 
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